Density estimation with heteroscedastic error

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Density estimation with heteroscedastic error

It is common, in deconvolution problems, to assume that the measurement errors are identically distributed. In many real life applications however, this condition is not satisfied and the deconvolution estimators developed for homoscedastic errors become inconsistent. In this paper, we introduce a kernel estimator of a density in the case of heteroscedastic contamination. We establish consisten...

متن کامل

Density Estimation with Replicate Heteroscedastic Measurements.

We present a deconvolution estimator for the density function of a random variable from a set of independent replicate measurements. We assume that measurements are made with normally distributed errors having unknown and possibly heterogeneous variances. The estimator generalizes the deconvoluting kernel density estimator of Stefanski and Carroll (1990), with error variances estimated from the...

متن کامل

Deconvolution density estimation with heteroscedastic errors using SIMEX

Abstract: In many real applications, the distribution of measurement error could vary with each subject or even with each observation so the errors are heteroscedastic. In this paper, we propose a fast algorithm using a simulation-extrapolation (SIMEX) method to recover the unknown density in the case of heteroscedastic contamination. We show the consistency of the estimator and obtain its asym...

متن کامل

Density deconvolution in a two-level heteroscedastic model with unknown error density

Abstract: We consider a statistical experiment where two types of contaminated data are observed. Therein, both data sets are affected by additive measurement errors but the scaling factors of the error density may be different and/or the observations have been averaged over different numbers of independent replicates. That kind of heteroscedasticity of the data allows us to identify the target...

متن کامل

Wavelet-based density estimation in a heteroscedastic convolution model

We consider a heteroscedastic convolution density model under the “ordinary smooth assumption”. We introduce a new adaptive wavelet estimator based on term-by-term hard thresholding rule. Its asymptotic properties are explored via the minimax approach under the mean integrated squared error over Besov balls. We prove that our estimator attains near optimal rates of convergence (lower bounds are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bernoulli

سال: 2008

ISSN: 1350-7265

DOI: 10.3150/08-bej121