Density estimation with heteroscedastic error
نویسندگان
چکیده
منابع مشابه
Density estimation with heteroscedastic error
It is common, in deconvolution problems, to assume that the measurement errors are identically distributed. In many real life applications however, this condition is not satisfied and the deconvolution estimators developed for homoscedastic errors become inconsistent. In this paper, we introduce a kernel estimator of a density in the case of heteroscedastic contamination. We establish consisten...
متن کاملDensity Estimation with Replicate Heteroscedastic Measurements.
We present a deconvolution estimator for the density function of a random variable from a set of independent replicate measurements. We assume that measurements are made with normally distributed errors having unknown and possibly heterogeneous variances. The estimator generalizes the deconvoluting kernel density estimator of Stefanski and Carroll (1990), with error variances estimated from the...
متن کاملDeconvolution density estimation with heteroscedastic errors using SIMEX
Abstract: In many real applications, the distribution of measurement error could vary with each subject or even with each observation so the errors are heteroscedastic. In this paper, we propose a fast algorithm using a simulation-extrapolation (SIMEX) method to recover the unknown density in the case of heteroscedastic contamination. We show the consistency of the estimator and obtain its asym...
متن کاملDensity deconvolution in a two-level heteroscedastic model with unknown error density
Abstract: We consider a statistical experiment where two types of contaminated data are observed. Therein, both data sets are affected by additive measurement errors but the scaling factors of the error density may be different and/or the observations have been averaged over different numbers of independent replicates. That kind of heteroscedasticity of the data allows us to identify the target...
متن کاملWavelet-based density estimation in a heteroscedastic convolution model
We consider a heteroscedastic convolution density model under the “ordinary smooth assumption”. We introduce a new adaptive wavelet estimator based on term-by-term hard thresholding rule. Its asymptotic properties are explored via the minimax approach under the mean integrated squared error over Besov balls. We prove that our estimator attains near optimal rates of convergence (lower bounds are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bernoulli
سال: 2008
ISSN: 1350-7265
DOI: 10.3150/08-bej121